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L Two Syntactical Systems.
1 set out two syntactical systems for logic cum set theory, <I share Quine's post-1960 preference
Jor excluding set theory from the scope of logic> each using only two primitive signs, namely the
left and right parenthesis. These syntaxes are adequate to express the system ML of Quine (1951),
hence they suffice to express any statement involving quantification and set membership. The
second system eliminates the explicit notation for quantifiers from the first system, by allowing a
name for the domain to appear in atomic formulae.

Let Greek letters be metalogical. A term is either a variable or the name of an individual. The
first system has the following formation rules:

L Primitive signs: ‘(‘ )

11. Symbols (well-formed signs): 1 i
A. Atomic: S, M 'Om?
Y 39y . e
0, (o 1. *0’ (hereinafier bbreviated as ‘0°) and (o)’ are giefiic symbols. 0
(v (Oamoanoy 2, IfT(c)7is an atomic symbol, "(c0)? is an atomic symbol. (The atomic symbol o is a

Vavwisn s (wen), (eoseasltosmena)  yarighle iff the number of instances of ‘0’ in ¢ is even and exceeds 2.) 11, A, 2 v

B. Molecular;

‘()u“(lw‘wm" 1. Ifp and o are symbols, "pois a symbol. = =, %

(Lo, oot

/&Wl Bl
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2. Ifo is a symbol, "(0)" is a symbol.
II. Formulae:

1. If$ is a formula and a is aferm, Y ((@)¢) is a formula, VAl
2. If ¢ and y are formulae, then " (($)(y))" is a formula.

Quine’s (1951: 80) variables w, x, y, z, w',... may abbreviate the variables defined in I1.A.2, with
Quine’s alphabetic order cotrelated with the order of generation of those variables. Formulae and
variables as defined above are collectively known as expressions. The minimum depth of an
expression is a crucial concept: it is the shallowest instance of ‘o0’ in the expression, i.e., the
smallest number of pairs of parentheses enclosing any instance of ‘o’ in the expression. An
unabbreviated variable has minimum depth 1.

The system ML consists of first order logic and set theory (the latter axiomatized in an elegant
yet idiosyncratic manner), and builds on a mere three primitives: a predicate, set membership; the
universal quantification of variables; and the stroke functor, expressing alternate denial. The mini-
mum depth of an unabbreviated formula provides an effective criterion for determining whether an

1. Paper read at the 26™ annual meeting of the Association for Symbolic Logic, held on December
27, 1961. Abstract published as Angell (1960).
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expression is a variable, atomic formula, quantified formula, or an application of the stroke

functor. Here’s how the above notation suffices to express these primitives: o _

* If‘e’ is taken as an abbreviation of ‘(0)’, the atomic formulae described in rule TIT.A may be
abbreviated as "(e(af}))”, meaning “a is a member of B”, where o and B are terms, and further
abbreviated to yield Quine’s atomic formula "B ™. Unabbreviated atomic formulae have
minimum depth 2; ' A : '

* "((«)$)" in rule IILB.1 may be taken as a universally quantified formula, and abbreviated as
"(Va(é))". Unabbreviated quantified formulae in our notation have minimum depth 3;

e The conventional notation for the stroke truth functor is the down-arrow ‘3. A formula of the
form *(($)(w))’, stipulated by rule IILB.2, denotes an instance of this furictor and-so may be
abbreviated as ‘(¢+)’. An unabbreviated instance of the stroke functor has minimum depth 4.

The rules in I define formulae that are syntactic equivalents of the formulae (Quine, p. 1241)

possible under ML. The latter, in turn, suffice to define abstraction, identity, ordered pair, relation,

function, number, etc. (pp. 323-24), and to express any purely mathematical statement.

'The second system of noiatjoh simply rgplac&s the rules m ”III‘_\‘Jv,'ith the following:

Y. Formulae: :
A. Ifa isaterm, and B is either a term or “(00)’, then "((0)(tB)))" is an atomic formula.
B. Molecular: SRR ' R - ‘
1. If ¢ is a formula, then 7(¢)" is a formula. -
2. If ¢ and y are formulae, then "(¢ )7 is a formula. -

I incorporates two departures from I1I. First, III'.A climinates I11.B.1 by allowing the name
‘(00)’ to appear in place of ‘B’ in ‘af’. ‘(00)’ can be interpreted as denoting the class of extant
things, assumed nonempty, and will be abbreviated by ‘E’. <Note that I call ‘E* a name, not a
constant. How does ‘E’ differ from what is conventionally termed the domain? Does ‘E’ name the
set whose members are all the elements of the domain, and is this set identical to Quine’s
universal set V? If not, 1 do not understand what is perhaps your paper’s most original detail. And
why is ‘E’ prefived?> The presence of ‘E’ effectively distinguishes a quantified formula from an
atomic one. The other departure from the first system replaces II.B.2 with [II".B.1-2.
Semantically speaking, this amounts to replacing the stroke functor with the expressively adequate
pair denial and conjunction. A minimum depth of 3 now signals that a formula is truth functional
rather than quantificational. The second departure is optional and serves mainly to make the
notation more economical.’

Letting, as before, ¢ and y be metalogical names for formulae and o and p for terms, the
second notation may be translated into familiar symbolism as follows:

Dl.raep  for(o}aB))" <Invoking the boundary logic interpretation of parens, (O\ap))

= ((ap)) = op.> Howwn ety - '€
D2. raeE” for "Ea” or "((o)}((00)))" <or "a(00)™> , . SR

2. Those who advocate taking conjunction and denial as primitive truth functors are as disting-
uished as they are few, namely Rosser and Quine. I submit that among the binary functors, = -
conjunction presents the fewest semantic ambiguities. ' ' o




D3. ¢ form(¢)" . i
D4.roay  forr(py)y 0 < : S a L
DS.ré>yr  for (@) - - . R o ”’

A

D6.7vy . for ()W) .
D7.7goy  for (GXWON)” -
D8."Va($)> for r—»(EaA-w't)“ or r((130t(<l>)))1 v

<dn advantage of the second notation you do not mention is its economy. Making denial primitive
can result in a substantial reduction in the length of, ‘formulae. Take the very szmple Jormula _
‘(ab) A (ced)’, which translates into your first notationas . ‘ .
‘() ab)) (o)X (((oXab)X((0)cd))))))". Your second notation reduces thai to - v
“(0)(@b))(0)(cd)))’.

Your D3~D7 reveal that, abstractmg from the outennost parens, your notatlon is dual to the ,
boundary notation 1 advocate and  isomorphic to Peirce’s alpha graphs. Below 1 list some equival-
ences between boundary and standard notation. The interpretation of the atomic symbols *()’ and
“(O) [‘0* and ‘(o) in your notation) is the key to boundary logic. The boundary notation for
‘(acb) A (ced)’ is ‘abed’. While supremely economical, this has the drawback of suggesnng
commutativity and assocwlmty ina context where they do not hoId

The existential gmphs have one more trick up thezr sleeve: a vanable « can appear ¢ oumde of an
atomic formula. If there is another instance of a at the same depth that is. part of an atomic
formula, then the stand-alone instance is redundant. ‘(o(—a—))’ serves to toggle the
quantification of —o—'". The boundary perspective on quantiﬁcatzon onIy strengfhens the utzlzty
of. makmg denial primitive. > L , A ,

Standard Bozmdwy Fxistential Graphs | Boundary, Entitative Graphs

TF 10 . . 0.
—~ . . L , @
¢vw, dAw | ((O)(W)), Y 1o, (GX¥)

| Yof—o—] | minimum depth of o is odd | maximum depth of o is odd .
Jof—o—7] | minimum depth of o is even | maximum depth of o is even
acf | . - op . ‘
oa=B . , IaB (ehmmable in well-lmown set. theoreuc ways)
S ‘=" reserved for logical equivalence.

I1. Interpreting the New Syntax. - '

We now provide an interpretation for our notation and show that every statement in:

e The standard notation for quantification theory is equivalent, on its usual interpretation, to a
statement in our notation;

e Qur notation is either equivalent to a statement in standard notation, as usually interpreted, or
else to an unobjectionable addition to the standard notation.

The interpretation proposed here resembles the usual ones provided for quannﬁcahon theory,
in that variables are assumed to range over some countable domain of individuals. Since our
system, like ML, provides for only one kind of variable, no further charactenzatlon of the domain




4
is needed except to mention that here, as in ML (Quine,. 1951: 121f), the individuals may be -
classes or abstract entities as well as individuals or concrete entities. <Pardon my ontological
Jastidiousness, but what aboiit ML's proper classes, whick can appear only to the right of €?To
my knowledge, ML does not allow for individuals [urelements) that are neither sets nor classes . .
and that can only appear to the left of ‘€. Quine dismissed urelements by identifying them with
their unit sets.> As in the usual interpretations, it is also assumed that replacing a variable in an
atomic formula with a name results in a statement [you wrote “the resulting statement will have
two truth values, T and F” }. Moreover, standard truth tables define the meanings of conjunction
and denial, and of formulae built from these. Our mtcxpretatlon differs from standard ones,
however, by virtue of: . :
e How variables are mterpreted in any glven statement;
* The addition of the name ‘E’ and its use in place of quantifiers.

In any statement ¢ of our notation, the leftmost occurrence of each vanable a.is read as
“some o, and every subsequent occurrence of o in ¢ is read simply as ‘e’ and understood to refer
back pronominally to the leftmost occurrence. This differs from the usual interpretation of the
standard notation where:

e “Some o” is usually associated with the existential quantifier (absent from our nomtlon) while
variables are read merely as ‘e’ or ‘it’, and are ambiguous names of individuals;

e Variables generally refer back pronominally only to the nearest quantifier on the left
containing them, rather than to the leftmost occurrence in the statement.

A consequence of our interpretation is the elimination of propositional ﬁmctlons (open
formulae); every formula standing alone is also a statement. Thus:

I. ‘xey’ means“somexisa mcmbcr of some y”, the standard notation for wlnch 18
(Bx3plxey))’; S
2. ‘-~(xey)’ means “it is false that some x is a member of some y”, or “nothmg is a member of
anything”, the standard notation for which is ‘—~(IxIy(xey))’ or, eqmvalently,

v (VxVy—.(x €y))’.

The equivalence of ‘xey” and —.(xey) in our notation to ‘(Eley(xe y))’ and ‘(VxVyﬂ(xey))’ i
standard notation is clear by reference to the interpretation given them in any domain. This follows
from the customary interpretation of ‘some a‘, namely an alternation of instantiations of o over
the individuals of the given domain (assuming a denumerably infinite domain with a suitable rule
for permuting names). Thus:

3.- ‘x€y’ means ‘(lelvle2v2el v2e2v..). ‘
‘~(xey)’ means ‘—~(lel v 1e2 v2el v2e2v...). By DeMorgan slaw this is eqmvalentto
‘(=(1el) A ~(1€2) A =(2€1) A ~(2€2) A...)'.

The stipulation that each variable refers back to its first (counting from the left) occurrence in
a formula entails that a formula ¢ containing o has one meaning when ¢ stands alone, and another
when ¢ is conjoined to another formula w also containing a. Thus the meaning of ‘(xey) A
—(xey)’ is not “Some x is a member of some y and no x is a member of any 3”, but “Some x is a
member of some y and is not a member of that y™. The latter, instead of conjoining the meanings
of (3) and (4), is an alternation of instantiations, i.e., ‘((1e1 A =(1€1)) v (1€2' A ~(1€2)) v 2el
A—(2€l)) v (2e2 A ~(2€2)) v...)’. The meaning of “Some x is a member of some y and no x is a
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member of any y” requires new variables, to wit ‘(—(x€y) A ~(wez))’. In this case, the two
formulae are materially equivalent as both are logically false. But the importance of dlstmgmshmg
the meanings in the interpretation is clear if we compare ‘xey’ alone with ‘(—(xey) A —-.(xey))
which merely says that “something is not a member of something”. In general:

] Ifé amd \p both oontam o, r(tl)/\\y)1 means an. altcmanon of i ms'mnuatmns of IF((i)/\\y)" over
~ values of . . .

Neither our notation nor the standard one enabl&s one to express all we w1sh to say about an
atomic formula solely by means of the formula and its denial. Not only do we want to say ‘xey”
(“some x is a member of some y”) and —a(xey) (“no x is a member of any y"), but also

5. “Some x is a not member of some y” or ‘(Fx(3y—(xe )}

6. “Some x is a member of every y” or ‘(Ax(Vy(xey)))’

7. “Some x is a not member of any y” :  of ‘(Ix(Vy—(x€y)))’

8. “Some y has every x as amember” - or ‘(G(Vx(xey)))’

9. “Some y has nox a member” - - - or ‘(3(Vrx-(xey)))

and denials of these. (5) can be expressed, as above, by ‘(=(x€y) A ~(xey))’- To provide for

(6)~9), I introduce the name ‘E’, representing, the class of things extant. ‘E’ denotm the umversal
class or predmate in any domam assxgned for purposes of i mterpretatlon Thus:

2**, If g is an individual in some domain assigned for purpos&s of mterpretatlon ‘aeF’ (or ‘Ea’)
is tautologous, i.e., necessarily has the value T,

Since every sound interpretation of quantlﬁcatlon theory requires a domain of extant md1v1duals,
introducing a name ‘E’ referring to the universal class is unobjectionable, for by the hypothesis of
the interpretation, every individual in the chosen domain exists. <Are you saying any more than
Quine’s dictum ‘To be is to be the value of a (bound) variable? Does the emergence of free logic
require amending this sentence?> -

By virtue of (1**) and (2**), the standard formulae (6)—(9) can be shown equlvalent, under
the interpretation, to their counterparts (6’)-—(9’) in our notation: . S

6. ‘(Bx A (V¥xes))"
7. ‘Ex A (Yy~(ep))’ -
8. ‘(By A (Vx(xey)))
9. “(Ey A (Vx—(x€3))y
For example, (6) reduces by D8 to ‘(Ex A ~(Ey A —{x€y)))’. By (1 *¥)_the latter formula takes the
following meaning in the interpretation:

((B1 A (<(E1 A—(1€1)) A ~(E2 A ﬁ(lezj) A —(E3 A ﬂ(1e3))..;j
V(B2 A (~(B] A—2e1) A (B2 A ~2€2) A~(E3 A ~Q€3))...)
v (E3 A (—.(El A *"1(361)) A —|(E2 A —-.(362)) /\ -—.(E3 /\ ~1(3€3)) Iv.)

Since by (2**), cach formula ‘Ea’ in the interpretation is. tautologous, and since dropping a
tautology from a conjunction leaves a truth tables unchanged (provided that at least one conjunct
remains), the preceding interpretation is equivalent to: |




(~(~(1€1)) A(~(1€2)) A ~(~(1€3))...) (e ae) A(leNA ..)
V (~(=Q2e D)) A ~(=(2€2)) A ~(=(2€3))...) V(QReDAQEDAREINA..) -
V(—(=@e) A(~BeQ) A~(=(B€I))..)v..).  v(ReD)AREDAQRENA..)V..).

Eliminating the double negations from the formula on the left yields the formula on the right, one
identical to the usual interpretation of ‘(3x(V)(x<y)))’. In like manner, each of (7°), (8'), and (9"),
as well as their denials, can be shown equivalent to the usual interpretations, given their standard
analogues (7), (8), and (9). In general:

3**_ Any statement "(30(¢))" in standard notation is eqmvalent under the mterpretatlon to the _
statement "(Eot$)™ in our notation. ‘

For if ¢ contains o, then in both cases the interpretation is an alternation of instantiations of o,
each constructed by replacing o, with the name of a different individual, If ¢ does not contain o,
then in neither case is the tmth table for the mterpretatlon altered by the presence of "(Boc)"' or
Eay. “

Thus every interpreted formula in standard notation is equivalent to soine interpreted formula
in our notation. For every formula in standard notation is reducible, by relettering bound variables
(and other steps), to an equivalent statement in prenex normal form, i.e., to a form where every
quantifier is to the left of every atomic formula bound thereto, and its scope encompasses all
expressions to its right. Under these conditions, standard variables are interpreted in precisely the
manner assigned to our variables. The prenex normal form may be further reduced via the standard
equivalences of "(Va($))" and "~(3a(—¢$))™, so that it contains only existential quantifiers. By
(3**), the meaning of the interpreted statement is unaltered when existential quantifiers are
replaced by "(Ea)™.

On the other hand, some statements in our notation do not have analogues i in standard
notation, since "Ea" may occur in ways not permitted to "(Ja), namely

1. rEa"and F o standmg alone are formulae, <this merges your rules (1 ) and (4)>

2. IfrEa™ appears anywhere in a conjunction, conjuncts of the form rEa do not alter the
interpretation of the conjuncuon

3. If"Eo” occurs asa conjunct, other instances thereof in the con]unctmn do not affect the
interpretation of the conjunctton

<I am not confident that my wording of (2) and (3) above ‘does justice to your intentions.>

The class of formulae in our notation having no analogues in standard notation may be character-
ized roughly as those containing either r—1ErJLj essentially, or instances of "Ec.™ without any well-
formed parts containing o but not ‘E’; e.g., ‘—Ex’, ‘Ex’, ’(Vx(Ex))’, ‘(—~Ex - Vyz(yez))'. But
such statements are not objectionable under any standard interpretation, as they merely reflect the
hypothesis that every individual in a given domain exists. The following rules enable translahng )
statements in our notation into statements in standard notation and prenex normal form:

1. 1f the atomic formula ¢ contains o, or is a conjunction at least two of whose conjuncts contain
o, then "Ecu A ¢7 replaces ¢. (Call this rule Ea~introduction);
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2. An"Ex can be moved to the left, either by the associativity of conjunction or by the follow-
ing rule of passage. If y does not contain a, replace "(y A ~(Ba A ~¢)) with "~(Bax A
~(¥AP)); '

3. All except the first occurrences of any “Eo.™ may then be dropped, since under any interpreta-
tion, tautologous conjuncts can be dropped from a conjuncuon without altering its truth table, -
provided. that at least one conjunct remain. : «

These rules preserve satisfiability, for all nonempty domams '

HI. Concluding Remarks.

Thus far, we have only shown that our second notation adequately expresses the standard mean-
ings of quantified statements, and that statements in our notation lacking counterparts in standard
notation are unobjectionable from the point of view of ordinary interpretations. We have neither
supplied axioms for our notation, nor should it be assumed that any standard axiom set will do the
job. For instance, if Quine’s "‘104 (modus ponens) were an axiom in our notation, it would yield
false consequents such as ‘(Ex A Ey A xey) - Vzw(zew)’ (“If something is a member of
somethmg, then everythmg is a member of everythm ).

Not\mthstandmg thls llmlted msult, our second notauonal system. suggests a more. general
system of some possible interest. Begin by assuming that each atomic symbol containing a prime
number of 0’s is rmerved for use as some predicate constant, as *(0)’ and ‘(00)’ stand for the .
predicate constants “—is a member of-— and “—exists”. Assume further that any atomic symbol
containing a number of 0’s having the prime p as a factor can be interpreted as a predicate.
containing the associated constant as a conjunctive part. For cxample, the class of variables, i.e.,
the class of atomic symbols conummg an even number of 0’s exceeding 2, defines a denumerably
infinite collection of symbols, each of which, whatever else it may be, ranges over the domain,

Extensions of first order logic arising from the introduction of new constants, e.g., * “—is a
class” or “—is a linguistic _exp:ession,” begin by assigning a distinct atomic.symbol to each new
constant, such that the number of 0’s in a new atomic symbol is a prime number ¢ differing from
the number of 0’s in any established constant. Variables whose number of 0’s have ¢ as'a prime
factor may then be used as variables ranging over the entities to which the new predicate applies,
e.g., variables for extant linguistic expressions, or extant classes. In this fashion, any conceivable
constant can be introduced into our system of notation in a consistent manner. Adding postulates
defining the properties of such constants then allows the notation of any apphed logicto be
mcorporated systematlcally w1thm that of general logic. :
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Remarks .

I value your paper because the notation it proposes is an instance of what Lou Kauffman, Land a
few others call boundary notation. If you are willing to go over this paper carefully, correcting this
and updating that, I may be willing to include the revised version in a book on boundary methods 1
am puiting together with Lou, a mathematician at Illinois-Chicago. Lou and I could reprint your
1960 JSL abstract as is, as evidence of your prescience. Or you could mcorporate patts of your
abstract into section I..

I have taken the liberty of reorgamzmg your paper somewhat. I have appended the early para-
graphs of your section 11 to section 1. My section IIT is made up of the last two paragraphs of your
section II. I propose wording for the section headings. T have reworked your two syntactical
systems to hlghhght more clearly the distinction between the atomic and the molecular.

Even though I never formally studied loglc, and am too young (51) for Qume s Mathematzcal ,
Logic (ML) to be my primary source for logic, I am nevertheless a fan of ML, having dipped into it
over and over again. This, in combination with my independent discovery of what I call boundary
notation, made section I above an easy and enjoyable read for me. I confess that I do not really fol-
low what you are doing section II. All references to ML are now to Quine (1951), the edition Har-
vard U Press keeps in print. I am very intrigued by ML‘s set theory, and cannot explain why that
theory has no following. (NF and NFU have an ample following in Europe; NFU has an ardent’
American disciple in Randall Hofmes But Qume s lifelong love for ML never fmmd an ccho )

I have made many editorial changes, mcludmg shortemng some paragraphs and sentences and
recasting sentences into the active voice. I have taken | the hbetty of modermzmg your notation for
the predlcate calculus and some of your terminology. E. g., | have replaced * ‘wff’ with “formula’,

‘existing’ with ‘extant’, ‘object’ with ‘individual’, *variable> with ‘term’, and *function’ with
‘functor’. Shortly after you wrote your paper, free logic emerged, hence I have added a mention
that the domain is nonempty. Given the date of your paper, I do not rule out further
modenuzatlons, such as eliminating the quasi-quotations. I note that the literature has grown
relaxed even with respect to regular quotatlon marks For that matter, nobody seems to fuss about
use versus mention any more.

Your nouon of an atemic symbol and your notation for variables are new to me. mwte you to
consider employing the following notation I've devised. ‘¢{a)’ means that at least one instance of
‘o’ appears in.‘¢’. Likewise, ‘¢)oi(’ means that ‘¢’ contains no instances of ‘a’. A metalogical
notation I’ve devised is ‘¢<>y’, meaning that ‘¢’ and ‘v’ express the same thing, however different
their notations. ‘<>’ is very useful when using one notation as a metalanguage to explicate another
notation, the object language, a situation with which your paper is rife.

Have you clearly distinguished between p as the prime number of o’s appearing in an atomic sym-
bol, on the one hand, and as a prime factor of that number, on the other? If your mvokmg primality
here is in any way related to Godel numbering, please state that fact.

The first boundary notation appeared in two papers C S Peirce wrote in 1886 but not pubhshed
untif 1993. Peirce did not linger over his 1886 notation, instead going on to develop his graphical
logic, perhaps the paradigmatic example of boundary notation. Even though the 1931-35 Collected
Papers devote more than 100pp to Peirce’s graphical logic, it was ignored until two fellows wrote
Ph.D. theses about it 40 years ago, hence shortly after you wrote your paper. Don Roberts
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published his thesis results in a 1964 volume of studies on Peirce edited by Moore and Robin, and
in a 1973 monograph. Jay Zeman'’s thesis can be read on his web site.

A spectre haunts modern logic, that of Charles Sanders Peirce. Peirce’s beta graphs, dev1sed in the
18905, point to a dramatic simplification of the mechanics of first order logic, one ignored to date.
The beta graphs show that there is no need for explicit quantification. All variables are taken as
‘implicitly’ quantified. Now determine the minimum depth of a variable in the sense of your .
paper. If that minimum depth is even [odd], the variable is existentially [universally] quantified.
Jay Zeman wrote on this in the 1967 JSL, and was probably the first person other than Peirce to
understand the beta graphs. Even now, 1 conjecture that the number of people who truly under-
stand Peirce’s graphical logic does not exceed 50, aithough that number does include Hilary
Putnam. I do not include myself among those 50, because I have yet to grasp Peirce’s beta graphs
to my satisfaction. I am working on a s1mphﬁcat|on of the beta graphs that would render obsolete
natural deductlon and refutatlon trees:

Randall Dlpert at SUNY Buﬁalo ranks Peirce the loglclan right bchmd Anstotle, Frege, Gﬁdel
and Tarski, and I heartily concur. Peirce, not Frege, invented the quantification and first order
logic we all teach and love. Peano acknowledged Peirce’s mﬂuence, and Schroder revered Peirce.
Model theorists claim descent from Lowenheim and Skolem, whom Peirce strongly influenced
either directly, or indirectly via Schroder. Polish logicians during the 1920 and 30s read Pen'cc,
and Tarski repeatedly noted Peirce’s h1stoncal importance. Startmg from some notation and a doz-
en theorems by De Morgan, Peirce produced a full-blown algebra of relations that became a back-
bone of Principia Mathematica, where Peirce is never mentioned. Russell cites Peirce in his
Principles of Mathemattcs, without enthusiasm. I lay the blame for the smibbing of Peirce by sev~
eral generations of logicians at Russell’s and Whitehead’s doorstep. (Qume is not to blame; cf. ML
and Methods of Logic.) Whitehead, by the way, expressed mock irritation when Hartshorne =~ -
showed him Peirce’s 'S unpubhshed wntmgs antlclpatmg a fair bit of W’s' process metaphysics. -

Peir¢e is the greatest abstract thinker ever to emerge in the western hemisphere, He has long been.
duly acknowledged as the father of pragmatism. He is also the father of semiotics, but most semio-
ticians march under the banner of Saussure. He wrote much on metaphysws, although his writings
under that heading are scattered and sometimes contradictory. For nearly 30 years, Peirce was a
working scientist employed by the US' govcrnment,“collecting geodetic and astronomicat data. His
hands-on experience with emp'lncal science surpasses that of any other philosopher of science,
with the possible exception of Pierre Duhem. Feibleman (1946), Goudge (1950) and Murphey
(1961) did yeoman’s work in trying to survey and assess Peirce’s work, but a great deal more work
is required. Brent (1993) is the first biography of Peirce; while many Peircians disagree with it, all
agree that Peirce’s life was a sorry mess. During the last quarter century of his life; he nearly
starved and froze to death; such was the cold shoulder American civilization presented to him,

Peirce studies labor under severe textual problems. The Collected Papers published by the
Harvard Uni. Press 1931-58, is badly flawed, in part because edited by inexperienced scholars,
namely Hartshome and Weiss at the dawn of their careers. The Peirce Nachlass is perhaps the .
most daunting one in our civilization. The circa 80,000 ms pages found in his study at his death
were not catalogued and microfilmed until 1971. Thirty years ago, a team funded by the NEH
began working on a critical edition. To date, only 6 of the projected 30 volumes have appeared. .




